Switch recombination breakpoints are strictly correlated with DNA recognition motifs for immunoglobulin S gamma 3 DNA-binding proteins
نویسندگان
چکیده
The deletion looping out model of switch (S) recombination predicts that the intervening DNA between switch regions will be excised as a circle. Circular excision products of immunoglobulin switch recombination have been recently isolated from lipopolysaccharide (LPS)-stimulated spleen cells. The recombination breakpoints in these large circles were found to fall within switch regions. Since switch recombination is clearly focused on switch regions, we hypothesized that some DNA-binding protein factor might be involved in specifically recognizing and facilitating the alignment of switch regions before recombination. Two DNA-binding proteins that specifically interact with two discrete regions of the S gamma 3 tandem repeat have been identified in crude and partially purified nuclear extracts derived from LPS- and dextran sulfate (DxS)-activated splenic B cells. The first factor has been found indistinguishable from NF-kappa B by mobility shift assays, methylation interference, competition binding studies, and supershift analysis using an antiserum specific for the p50 component. The second appears to be composed of two closely traveling mobilities that do not separate upon partial purification. This second complex is unique and specific for S gamma 3 by methylation interference assays and competition-binding analysis. The sites at which recombination occurs in the S gamma 3 switch region have been analyzed and found to strictly correlate with the binding sites of the S gamma 3 switch binding proteins.
منابع مشابه
Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation.
During maturation of the immune response, IgM+ B cells switch to expression of one of the downstream isotypes (IgG, A or E). This class switching occurs by region-specific recombination within the IgH locus through an unknown mechanism. A lack of switch recombination in mice deficient in components of the DNA-dependent protein kinase (DNA-PK)-Ku complex has pointed to a role for non-homologous ...
متن کاملBiased distribution of recombination sites within S regions upon immunoglobulin class switch recombination induced by transforming growth factor beta and lipopolysaccharide
We have characterized extrachromosomal circular DNAs from adult mouse spleen cells that were induced to switch to immunoglobulin A (IgA) with bacterial lipopolysaccharide (LPS) and transforming growth factor beta (TGF-beta), and identified breakpoints of S mu/S gamma 3, S mu/S gamma 2, S mu/S alpha, S gamma 3/S alpha, and S gamma 2/S alpha recombinants. The S mu recombination donor sites cluste...
متن کاملAnalysis of immunoglobulin Sgamma3 recombination breakpoints by PCR: implications for the mechanism of isotype switching.
The molecular mechanism of immunoglobulin switch recombination is poorly understood. Switch recombination occurs between pairs of switch regions located upstream of the constant heavy chain genes. Previously we showed that switch recombination breakpoints cluster to a defined subregion in the Sgamma3, Sgamma1 and Sgamma2b tandem repeats. We have developed a strategy for direct amplification of ...
متن کاملLR1, a lipopolysaccharide-responsive factor with binding sites in the immunoglobulin switch regions and heavy-chain enhancer.
In nuclear extracts of primary murine B lymphocytes cultured with LPS we have identified an inducible DNA-binding activity that is a candidate regulator of isotype-switch recombination. This LPS-responsive factor, which we refer to as LR1, is induced in LPS-cultured primary cells with kinetics that parallel isotype-switch recombination. LR1 binds sequences from the S gamma 1, S gamma 3, and S a...
متن کاملScaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination
Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 176 شماره
صفحات -
تاریخ انتشار 1992